ECS455: Chapter 4

Multiple Access

4.5 Cyclic Codes

Note that this topic is not directly related to DSSS nor multiple access. It is a kind of error control codes. However, the technique used are quite similar to the generation of m-sequence and hence we would like to discuss it here.

	Office Hours:				
	BKD, 6th floor of Sirindhralai building				
	Tuesday	14:20-15:20			
Dr.Prapun Suksompong	Wednesday	14:20-15:20			
prapun.com/ecs455	Friday	9:15-10:15			

MATLAB: circshift

• $\underline{\mathbf{r}}'$ =circshift($\underline{\mathbf{r}}$, [0, Δ]) \mathbf{r}' =circshift(\mathbf{r} , Δ , 2)

circularly shifts the elements in a ${\bf row \ vector \ \underline{r}}$ to the right by Δ positions.

- circshift([1 2 3 4 5],[0 3])=[3 4 5 1 2]
- $\vec{\mathbf{v}}' = \text{circshift}(\vec{\mathbf{v}}, \Delta)$

 $\vec{\mathbf{v}}'$ =circshift($\vec{\mathbf{v}}$, [Δ , 0])) $\vec{\mathbf{v}}'$ =circshift($\vec{\mathbf{v}}$, Δ , 1)

circularly shifts the elements in a **column vector** $\vec{\mathbf{v}}$ down by Δ positions.

MATLAB: demo

```
>> r = 1:5
     1
           2
                  3
                        4
                               5
>> circshift(r,[0,3])
ans =
                               2
     3
                  5
                        1
>> circshift(r,3,2)
ans =
                               2
     3
                  5
                        1
```

>> circshift(r,3)

2

Warning: CIRCSHIFT(X,K) with scalar K and where size(X,1)==1 will change behavior in future versions. To retain current behavior, use CIRCSHIFT(X,[K,0]) instead.

5

ans =

1

3 4

MATLAB: demo								
>> v = (1:5)' v = 1 2 3 4 5								
<pre>>> circshift(v,[3,0]) ans =</pre>	<pre>>> circshift(v,3,1) ans =</pre>	<pre>>> circshift(v,3) ans =</pre>						

Linear Cyclic Codes

- Definition: A linear code is **cyclic** if a cyclic shift of any valid codeword is still a valid codeword.
 - Lead to more practical implementation.
 - Allow their encoding and decoding functions to be of much lower complexity than the matrix multiplications
- Block codes used in FEC systems are almost always cyclic codes [C&C, 2009, p. 611][G, 2005, p. 220].
- CRC = cyclic redundancy check
 - Invented by W. Wesley Peterson in 1961

Ex. Codebook of a Systematic Cyclic Code

m			<u>c</u>								
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	1	1	0	1	0	0	0	1	
0	0	1	0	1	1	1	0	0	1	0	
0	0	1	1	0	1	0	0	0	1	1	
0	1	0	0	0	1	1	0	1	0	0	
0	1	0	1	1	1	0	0	1	0	1	
0	1	1	0	1	0	0	0	1	1	0	
0	1	1	1	0	0	1	0	1	1	1	
1	0	0	0	1	1	0	1	0	0	0	
1	0	0	1	0	1	1	1	0	0	1	
1	0	1	0	0	0	1	1	0	1	0	
1	0	1	1	1	0	0	1	0	1	1	
1	1	0	0	1	0	1	1	1	0	0	
1	1	0	1	0	0	0	1	1	0	1	
1	1	1	0	0	1	0	1	1	1	0	
1	1	1	1	1	1	1	1	1	1	1	

Associating Vectors with Polynomials

Long Division (for numbers)

Polynomial (Long) Division

[https://en.wikipedia.org/wiki/Polynomial_long_division]

Polynomial (Long) Division in GF(2)

Generator Polynomial

- Cyclic codes are generated via a **generator polynomial** instead of a generator matrix.
- $g(x) = g_0 + g_1 x + \dots + g_{n-k} x^{n-k}$
- Degree = n k
- $g_0 = g_{n-k} = 1$
- Is a divisor of $x^n 1$.
- c(x) is a valid codeword iff g(x) divides c(x) with no remainder.
- Non-systematic: c(x) = m(x)g(x)
- Systematic: $c(x) = x^{n-k}m(x) + r(x)$

34

Example

- Consider a cyclic code with generator polynomial $g(x) = 1 + x^2 + x^3$.
- Determine if the codeword described by each of the following polynomials is a valid codeword for this generator polynomial.

•
$$c_1(x) = 1 + x^2 + x^5 + x^6$$

•
$$c_2(x) = 1 + x^2 + x^3 + x^5 + x^6$$

Generation of Systematic Cyclic Code

 $c(x) = x^{n-k}m(x) - r(x)$

- Three steps:
- 1. Multiply the message polynomial m(x) by x^{n-k}
- 2. Divide $x^{n-k}m(x)$ by g(x) to get the remainder polynomial r(x).

• $r(x) \equiv x^{n-k}m(x) \pmod{g(x)}$

- 3. Substract (add) r(x) from (to) $x^{n-k}m(x)$
- The polynomial multiplications are straightforward to implement, and the polynomial division is easily implemented with a feedback shift register.
- Thus, codeword generation for systematic cyclic codes has very low cost and low complexity.

Example

- Consider a systematic cyclic (7,4) code whose generator polynomial is $g(x) = 1 + x + x^3$.
- Suppose the message is 0011. Find the corresponding codeword.

88

Generation of Systematic Cyclic Code

 $c(x) = x^{n-k}m(x) - r(x)$

- $x^{n-k}m(x)$
 - Shift the message bits to the k rightmost digits of the codewords
 - The first n-k bits are "blank"
 - These n k bits are to be "filled" by r(x).
- By construction,

•
$$\deg(r(x)) < \deg(g(x)) = n - k$$

•
$$\deg(r(x)) \le n - k - 1$$

• Correspond to n - k bits.

•
$$\frac{x^{n-k}m(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}$$

• $x^{n-k}m(x) - r(x) = q(x)g(x)$

References: Cyclic Codes

- Lathi and Ding, *Modern Digital and Analog Communication Systems*, 2009
 - [TK5101 L333 2009]
 - Section 15.4 p. 918-923
- Carlson and Crilly, *Communication Systems: An Introduction to Signals and Noise in Electrical Communication*, 2010
 - [TK5102.5 C3 2010]
 - Section 13.2 p. 611-616
- Goldsmith, *Wireless Communications*, 2005
 - Section 8.2.4 p. 220-222

