ECS455: Chapter 4

Multiple Access

4.5 Cyclic Codes

Note that this topic is not directly related to DSSS nor multiple access. It is a kind of error control codes. However, the technique used are quite similar to the generation of m-sequence and hence we would like to discuss it here

Dr.Prapun Suksompong

prapun.com/ecs455
Wednesday 14:20-15:20
Friday $\quad 9: 15-10: 15$

MATLAB: demo

```
>> r = 1:5
r =
\begin{tabular}{lllll}
1 & 2 & 3 & 4 & 5
\end{tabular}
```

3	4	5	1	2

```
```

>> circshift(r,[0,3])

```
>> circshift(r,[0,3])
ans =
ans =
    3
    3
>> circshift(r,3,2)
>> circshift(r,3,2)
ans =
```

ans =

```
>> circshift(r, 3)
Warning: CIRCSHIFT(X,K) with scalar K and where size(X,1)==1 will change behavior in future versions. To retain current behavior, use CIRCSHIFT(X,[K,0]) instead.
ans =

\section*{MATLAB: circshift}
- \(\underline{r}^{\prime}=\operatorname{circshift}(\underline{r},[0, \Delta])\)
\(\underline{r}^{\prime}=\operatorname{circshift}(\underline{r}, \Delta, 2)\)
circularly shifts the elements in a row vector \(\underline{r}\) to the right by \(\Delta\) positions.

- \(\overrightarrow{\mathrm{v}}^{\prime}=\operatorname{circshift}(\overrightarrow{\mathrm{v}}, \Delta)\)
\(\overrightarrow{\mathrm{v}}^{\prime}=\operatorname{circshift}(\overrightarrow{\mathrm{v}},[\Delta, 0])\)
\(\overrightarrow{\mathrm{v}}^{\prime}=\operatorname{circshift}(\overrightarrow{\mathrm{v}}, \Delta, 1)\)
circularly shifts the elements in a column vector \(\overrightarrow{\mathbf{v}}\) down by \(\Delta\) positions.

\section*{MATLAB: demo}
```

>> v = (1:5)
v =
1
2
3
4

```
>> circshift(v, \([3,0]\) )
ans =
    3
    3
4
    5
    1
    1
    2


\section*{Linear Cyclic Codes}
- Definition: A linear code is cyclic if a cyclic shift of any valid codeword is still a valid codeword.
- Lead to more practical implementation.
- Allow their encoding and decoding functions to be of much lower complexity than the matrix multiplications
- Block codes used in FEC systems are almost always cyclic codes [C\&C, 2009, p. 611][G, 2005, p. 220].
- \(\mathrm{CRC}=\) cyclic redundancy check
- Invented by W. Wesley Peterson in 1961

\section*{Ex. Codebook of a Systematic Cyclic Code}
\begin{tabular}{|c|c|}
\hline \(\underline{\text { m }}\) & \(\underline{\text { c }}\) \\
\hline 00000 & 0000000 \\
\hline 00011 & 1010001 \\
\hline 00101 & 1110010 \\
\hline 0011 & 0100011 \\
\hline 01000 & 0110100 \\
\hline 01011 & 1100101 \\
\hline 01101 & 1000110 \\
\hline 0111 & 0010111 \\
\hline 10001 & 1101000 \\
\hline 1001 & 0111001 \\
\hline 10100 & 0011010 \\
\hline 10111 & 1001011 \\
\hline 11001 & 1011100 \\
\hline 11010 & 0001101 \\
\hline 11100 & 0101110 \\
\hline 11111 & 1111111 \\
\hline
\end{tabular}

\section*{Associating Vectors with Polynomials}

\[
\underline{\mathbf{c}}=1010011 \longleftrightarrow c(x)=1+0 x+1 x^{2}+0 x^{3}+0 x^{4}+1 x^{5}+1 x^{6}
\]

Similarly,
Each message block has \(k\) bits. So, the degree of \(m(x)\) is \(k-1\).
(80 \(\underline{\mathbf{m}}=\left(m_{0}, m_{1}, \ldots, m_{k-1}\right)\) \(m(x)=m_{0}+m_{1} x+m_{2} x^{2}+\cdots+m_{k-1} x^{k-1}\) Message polynomial

\section*{Long Division (for numbers)}
quotient 13
divisor \(6 \longdiv { 8 3 }\) dividend
6
23
\(\underline{18}\)
5 remainder
\(6 \longdiv { 1 3 }\)
6
\(\overline{18}\)
\begin{tabular}{l}
18 \\
18 \\
\hline
\end{tabular}
\(\underline{18}\)

\section*{0}

Many way to write equations that describe the results:
- \(78=6 \times 13+5\)
- \(\frac{83}{6}=13+\frac{5}{6}\)
- \(83 \equiv 5(\bmod 6)\)
- Dividing 78 by 6 leaves no remainder
- \(78 \equiv 0 \bmod 6\)
- 78 is a multiple of 6
- 6 divides 78
- 6 is a divisor of 78
- 78 is divisible by 6
- 6 is a factor of 78
- \(6 \mid 78\)

\section*{Polynomial (Long) Division}
\[
\begin{gathered}
\text { quotient } \\
x^{2}+1 x+3 \\
\text { divisor } \begin{array}{r}
x^{3}-2 x^{2}+0 x-4 \\
\frac{x^{3}-3 x^{2}}{+x^{2}+0 x} \\
\frac{+x^{2}-3 x}{+3 x-4} \\
\frac{+3 x-9}{+5}
\end{array}
\end{gathered}
\]

\section*{Generator Polynomial}
- Cyclic codes are generated via a generator polynomial instead of a generator matrix.
- \(g(x)=g_{0}+g_{1} x+\cdots+g_{n-k} x^{n-k}\)
- Degree \(=n-k\)
- \(g_{0}=g_{n-k}=1\)
- Is a divisor of \(x^{n}-1\).
- \(c(x)\) is a valid codeword iff \(g(x)\) divides \(c(x)\) with no remainder.
- Non-systematic: \(c(x)=m(x) g(x)\)
- Systematic: \(c(x)=x^{n-k} m(x)+r(x)\)

\section*{Example}
- Consider a cyclic code with generator polynomial
\[
g(x)=1+x^{2}+x^{3}
\]
- Determine if the codeword described by each of the following polynomials is a valid codeword for this generator polynomial.
\[
c_{1}(x)=1+x^{2}+x^{5}+x^{6}
\]
\[
c_{2}(x)=1+x^{2}+x^{3}+x^{5}+x^{6}
\]
\[
x^{6}+x^{5}+x^{3}+x^{2}+1 \equiv\left(x^{2}+1\right) \quad\left(\bmod \left(x^{3}+x^{2}+1\right)\right)
\]

\section*{Generation of Systematic Cyclic Code}
\[
c(x)=x^{n-k} m(x)-r(x)
\]
- Three steps:
1. Multiply the message polynomial \(m(x)\) by \(x^{n-k}\)
2. Divide \(x^{n-k} m(x)\) by \(g(x)\) to get the remainder polynomial \(r(x)\).
- \(r(x) \equiv x^{n-k} m(x) \quad(\bmod g(x))\)
3. Substract (add) \(r(x)\) from (to) \(x^{n-k} m(x)\)
- The polynomial multiplications are straightforward to implement, and the polynomial division is easily implemented with a feedback shift register.
- Thus, codeword generation for systematic cyclic codes has very low cost and low complexity.

86

\section*{Generation of Systematic Cyclic Code}
\[
c(x)=x^{n-k} m(x)-r(x)
\]
- \(x^{n-k} m(x)\)
- Shift the message bits to the \(k\) rightmost digits of the codewords
- The first \(n-k\) bits are "blank"
- These \(n-k\) bits are to be "filled" by \(r(x)\).
- By construction,
- \(\operatorname{deg}(r(x))<\operatorname{deg}(g(x))=n-k\)
- \(\operatorname{deg}(r(x)) \leq n-k-1\)
- Correspond to \(n-k\) bits.
- \(\frac{x^{n-k} m(x)}{g(x)}=q(x)+\frac{r(x)}{g(x)}\)
- \(x^{n-k} m(x)-r(x)=q(x) g(x)\)

\section*{Example}
- Consider a systematic cyclic \((7,4)\) code whose generator polynomial is \(g(x)=1+x+x^{3}\).
- Suppose the message is 0011 . Find the corresponding codeword.

\section*{References: Cyclic Codes}
- Lathi and Ding, Modern Digital and Analog Communication Systems, 2009
- [TK5101 L333 2009]
- Section 15.4 p. 918-923
- Carlson and Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical
Communication, 2010
- [TK5102.5 C3 2010]
- Section 13.2 p. 611-616
- Goldsmith, Wireless Communications, 2005
- Section 8.2.4 p. 220-222
```

